Processing math: 100%

Thursday, January 30, 2020

Chapter 8.15 - When Initial velocity is Greater than or Less than Escape velocity

In the previous sectionwe saw escape velocity
• In this section we will see what happens when the launch velocity is less than or greater than escape velocity

When the launch velocity is greater than the escape velocity
1. Suppose that, an object is launched with a velocity of vi
• Let vi be greater than ve
2. Total energy on the surface of the earth = 12mv2iGMEmRE
3. Total energy at the final position = 12mv2f+0
• Note that, vf will not be zero when vi is greater than ve. We saw the reason in the previous section
4. Equating the two energies, we get: 12mv2iGMEmRE=12mv2f
12v2iGMERE=12v2f
5. But we have: ve=2GMERE
v2e=2GMERE
v2e2=GMERE
6. So we can replace the second term in (4). We get:
12v2iv2e2=12v2f
v2iv2e=v2f
Thus we get:
Eq.8.20vf=v2iv2e
7. Thus we can easily calculate vf
■ Once the object is out of the gravitational field, there will not be any force acting on it. So that object will begin to move with a constant velocity of vf

When the launch velocity is less than the escape velocity
1. Suppose that, an object is launched with a velocity of vi
• Let vi be less than ve
2. Total energy on the surface of the earth = 12mv2iGMEmRE
3. Total energy at the final position:
(i) In this case, the object does not escape from the gravitational field. So it's potential energy does not become zero at the final position
(ii) Let it rise to a maximum height h above the surface of the earth
• Then the potential energy at the final position is GMEm(RE+h)
(iii) The object continues to rise until it's velocity becomes zero
• h is the height attained at the instant when velocity becomes zero
• So the final kinetic energy is zero
(iv) Thus we can write:
Total energy at the final position = GMEm(RE+h)+0
4. Equating the energies in (2) and (3), we get:
12mv2iGMEmRE=GMEm(RE+h)
12v2i=GMEREGME(RE+h)
12v2i=GME(1RE1(RE+h))
12v2i=GME(hRE(RE+h))
12v2i=GMER2E(h(1+hRE))
12v2i=GMER2E(h(1+hRE))
v2i=2g(h(1+hRE))
v2i=2gh(1+hRE)
v2i+v2ihRE=2gh
v2iRE+v2ih=2ghRE
v2iRE=(2gREv2i)h
h=v2iRE2gREv2i
Thus we get Eq.8.21h=v2i2gv2iRE
• This is the maximum height that can be achieved when the launch velocity is less than the escape velocity 

Now we will see some solved examples
Solved example 8.38
A body is projected upwards with a velocity of (4 × 11.2) km s-1 from the surface of the earth. What will be the velocity of the body when it escapes from the gravitational field of the earth?
Solution:
• In this problem the launch velocity is greater than escape velocity. So we will use Eq.8.20:
vf=v2iv2e
• Substituting the values, we get: vf=(4×11.2)211.22=15×11.22=11.215

Solved example 8.39
A body is projected upwards from the surface of the earth with a velocity equal to one fourth the escape velocity. What is the maximum height that the body will achieve?
Solution:
1. In this problem, the launch velocity is less than escape velocity
• In such cases, we can use Eq.8.21: h=v2i2gv2iRE
2. But it is more convenient to start from the basics. That is., we start by equating the energies:
12mv2iGMEmRE=GMEm(RE+h)
12v2i=GMEREGME(RE+h)
12v2i=GMEREGMERE(1+hRE)
3. But we have: ve=2GMERE
v2e=2GMERE
v2e2=GMERE
4. So the equation in (2) becomes:
12v2i=v2e2v2e2(1+hRE)
5. Given that launch velocity is equal to one fourth the escape velocity. So we get:
132v2e=v2e2v2e2(1+hRE)
132=1212(1+hRE)
116=11(1+hRE)
1(1+hRE)=1516
(1+hRE)=1615
hRE=115
h=RE15

Solved example 8.40
A body has to reach a height RE above the surface of the earth. What is the required launch velocity?
Solution:
1. In this problem, a definite target height is given. So the launch velocity is less than escape velocity. Other wise the object will escape from the gravitational field of the earth
• In such cases, we can use Eq.8.21: h=v2i2gv2iRE
2. But it is more convenient to start from the basics. That is., we start by equating the energies:
12mv2iGMEmRE=GMEm(RE+h)
12v2i=GMEREGME(RE+h)
12v2i=GMEREGMERE(1+hRE)
3. But we have: ve=2GMERE
v2e=2GMERE
v2e2=GMERE
4. So the equation in (2) becomes:
12v2i=v2e2v2e2(1+hRE)
5. Given that h = RE. So we get:
12v2i=v2e2v2e2(1+RERE)=v2e2v2e4
12v2i=v2e2v2e4=v2e4
vi=ve2
6. But we have: ve=2GMERE
So the result in (4) becomes: vi=2GMERE×12
vi=GMERE

Solved example 8.41
A rocket is fired vertically with a speed of 5 km s-1 from the earth’s surface. How far from the earth does the rocket go before returning to the earth ? Mass of the earth = 6.0 × 1024 kg; mean radius of the earth = 6.4 × 106  m; G = 6.67 × 10-11 N mkg-2
Solution:
1. In this problem, the launch velocity is less than escape velocity. The actual values are also given
• In such cases, we can use Eq.8.21: h=v2i2gv2iRE
2. Substituting the values, we get:
h=500022(9.81)500026400000=1590963.33 m
3. So distance from the center of the earth = (RE+h) = (6400000 + 1590963.33
7990963.33 m = 8 × 10m

Solved example 8.42
The escape speed of a projectile on the earth’s surface is 11.2 km s-1. A body is projected out with thrice this speed. What is the speed of the body far away from the earth? Ignore the presence of the sun and other planets.
Solution:
• In this problem the launch velocity is greater than escape velocity. So we will use Eq.8.20:
vf=v2iv2e

• Substituting the values, we get: vf=(3×11.2)211.22=8×11.22=11.28=31.7 km s-1

• In the next section we will see earth of satellites



PREVIOUS           CONTENTS          NEXT

Copyright©2020 Higher Secondary Physics. blogspot.in - All Rights Reserved

No comments:

Post a Comment