Wednesday, March 20, 2019

Chapter 6.25 - Two-Dimensional Collision - Examples

In the previous section, we discussed two-dimensional collision. We also saw a solved example. In this section, we will see a few more solved examples.

Solved example 6.40
Two objects 'A' and 'B' have masses 5 kg and 2.5 kg respectively. 'A' moves with a velocity of 4.5 ms-1 towards 'B' which is initially at rest. After the collision, object 'A' moves in a direction which makes 30o with it's original direction. Object 'B' moves in a direction which makes -30o with the original direction of 'A'. Find the final velocities of 'A' and 'B'. Is the collision elastic or inelastic?
Solution:
1. Fig.6.80 below shows the collision:
Fig.6.80
2. The table is shown below:
• All the cells in columns 1 to 5 can be filled up (using the given data) except (A,3) and (B,3)
    ♦ (A,3) contains the unknown $\mathbf\small{|\vec{v_{Af}}|}$
    ♦ (B,3) contains the unknown $\mathbf\small{|\vec{v_{Bf}}|}$
• So there are two unknowns. We need to form two equations only
• Also note that, there are two 'question marks' in the fig.6.80 above
3. Considering momenta in the x-direction, we have:
• Sum in column 6 = Sum in column 8
$\mathbf\small{\Rightarrow [22.5+0]=[5|\vec{v_{Af(x)}}|+2.5|\vec{v_{Bf(x)}}|]}$
$\mathbf\small{\Rightarrow [22.5]=[5|\vec{v_{Af}}| \cos \theta_{Af}+2.5|\vec{v_{Bf}}| \cos \theta_{Bf}]}$
$\mathbf\small{\Rightarrow [22.5]=[5|\vec{v_{Af}}| \cos 30+|\vec{v_{Bf}}| \cos (-30)]}$
Dividing both sides by 2.5, we get:
$\mathbf\small{[9]=[2|\vec{v_{Af}}| \cos 30+|\vec{v_{Bf}}| \cos (-30)]}$
$\mathbf\small{\Rightarrow [9]=[1.732|\vec{v_{Af}}|+0.866|\vec{v_{Bf}}| ]}$
4. Considering momenta in the y-direction, we have:
• Sum in column 7 = Sum in column 9
$\mathbf\small{\Rightarrow [0]=[5|\vec{v_{Af(y)}}|+2.5|\vec{v_{Bf(y)}}|]}$
$\mathbf\small{\Rightarrow [0]=[5|\vec{v_{Af}}| \sin 30+|\vec{v_{Bf}}| \sin (-30)]}$
Deviding both sides by 2.5, we get:
$\mathbf\small{\Rightarrow [0]=[2|\vec{v_{Af}}| \sin 30+|\vec{v_{Bf}}| \sin (-30)]]}$
$\mathbf\small{\Rightarrow [0]=[2|\vec{v_{Af}}| 0.5+|\vec{v_{Bf}}| (-0.5)]}$
$\mathbf\small{\Rightarrow [0]=[|\vec{v_{Af}}|-.5|\vec{v_{Bf}}|]}$
5. So we have two equations:
(i) From (3) we have: $\mathbf\small{1.732|\vec{v_{Af}}|+0.866|\vec{v_{Bf}}|=9}$
(ii) From (4) we have: $\mathbf\small{|\vec{v_{Af}}|-0.5|\vec{v_{Bf}}|=0}$
• To solve the equations, the following steps can be used:
    ♦ Multiply (i) by '0.5'
    ♦ Multiply (ii) by 0.866
    ♦ Add the results 
• We get:
vAf = 2.598 ms-1
vBf = 5.196 ms-1
6. Let us check whether it is an elastic collision or not:
• Applying law of conservation of kinetic energy, we have:
$\mathbf\small{\frac{1}{2}m_A|\vec{v}_{Ai}|^2+\frac{1}{2}m_B|\vec{v}_{Bi}|^2=\frac{1}{2}m_A|\vec{v}_{Af}|^2+\frac{1}{2}m_B|\vec{v}_{Bf}|^2}$
• Let us first calculate the LHS:
$\mathbf\small{\frac{1}{2}m_A|\vec{v}_{Ai}|^2+\frac{1}{2}m_B|\vec{v}_{Bi}|^2=\frac{1}{2}\times 5 \times 4.5^2+\frac{1}{2}\times 2.5 \times0^2=50.625\; \text{J}}$
• Next we calculate the RHS:
$\mathbf\small{\frac{1}{2}m_A|\vec{v}_{Af}|^2+\frac{1}{2}m_B|\vec{v}_{Bf}|^2=\frac{1}{2}\times 5 \times 2.598^2+\frac{1}{2}\times 2.5 \times 5.196^2=50.628\; \text{J}}$
■ We get: LHS = RHS
So kinetic energy is conserved and so it is an elastic collision


• We saw solved example 6.39 in the previous section
• We saw solved example 6.40 above in the present section
• Both of those examples involves only two unknowns
• Such problems can be easily solved using two equations that we obtain from the law of conservation of momentum
■ The calculations become even more easier if the two objects stick together after collision
• Let us see such a problem: 

Solved example 6.41
Car A has a mass of 1800 kg. It moves towards the North with a velocity of 15 ms-1. Car B has a mass of 1500 kg. It moves in a South-East direction, making an angle of 30o with the East-West direction. It has a velocity of 10 ms-1. After collision, they stick together. Find the velocity (magnitude and direction) of the combined mass after the collision
Solution:
1. Fig.6.81 below shows the collision:
Fig.6.81
• East-West direction can be taken as the x-axis
2. The table is shown below:
• The first 5 columns can be filled up using the given data
• However, be careful while filling column 4
    ♦ Velocity of 'A' makes an angle of 90o with the East-West direction (the x-axis)
    ♦ So we have '90' in the cell (A,4)
    ♦ Velocity of 'B' makes an angle of 30with the x-axis
    ♦ So we have '30' in the cell (B,4)
    ♦ sin 30 is not negative
    ♦ But we must put a negative value in the cell (B,7)
    ♦ This is because, that velocity is towards the negative side of the y-axis
• After collision, both cars move together. So they will be having the same velocity
    ♦ Thus we have: $\mathbf\small{|\vec{v}_{Af}|=|\vec{v}_{Bf}|}$
    ♦ We can put: $\mathbf\small{|\vec{v}_{Af}|=|\vec{v}_{Bf}|=|\vec{v}_{f}|}$ 
    ♦ We see this in the cells (A,3) and (B,3)
• After collision, since they move together with the same velocity, they will be making the same angle with the x axis
    ♦ Thus we have: $\mathbf\small{\theta_{Af}=\theta_{Bf}}$
    ♦ We can put: $\mathbf\small{\theta_{Af}=\theta_{Bf}=\theta_{f}}$ 
    ♦ We see this in the cells (A,5) and (B,5)
• After filling the first five columns, we see that there are two unknowns. So we need to form two equations only
• Also note that, there are two 'question marks' in the fig.6.81 above
3. Considering momenta in the x-direction, we have:
• Sum in column 6 = Sum in column 8
$\mathbf\small{\Rightarrow [0+12990]=[1800|\vec{v_{f(x)}}|+1500|\vec{v_{f(x)}}|]}$
$\mathbf\small{\Rightarrow [12990]=[(1800+1500)|\vec{v_{f(x)}}|]}$
$\mathbf\small{\Rightarrow [12990]=[3300|\vec{v_{f(x)}}|]}$
$\mathbf\small{\Rightarrow |\vec{v}_{f(x)}|=\frac{12990}{3300}=3.936\;\text{ms}^{-1}}$
4. Considering momenta in the y-direction, we have:
• Sum in column 7 = Sum in column 9
$\mathbf\small{\Rightarrow [27000-7500]=[1800|\vec{v_{f(y)}}|+1500|\vec{v_{f(y)}}|]}$
$\mathbf\small{\Rightarrow [19500]=[(1800+1500)|\vec{v_{f(y)}}|]}$
$\mathbf\small{\Rightarrow [19500]=[3300|\vec{v_{f(y)}}|]}$
$\mathbf\small{\Rightarrow |\vec{v}_{f(y)}|=\frac{19500}{3300}=5.91\;\text{ms}^{-1}}$
5. Now we can find the magnitude of the resultant
$\mathbf\small{|\vec{v}_{f}|=\sqrt{|\vec{v}_{fx}|^2+|\vec{v}_{fy}|^2}=\sqrt{3.936^2+5.91^2}=7.1\;\text{ms}^{-1}}$
6. Direction of this resultant is given by: $\mathbf\small{\tan \theta_f=\frac{|\vec{v}_{fy}|}{|\vec{v}_{fx}|}=\frac{5.91}{3.936}=1.501}$
$\mathbf\small{\Rightarrow \theta_f=\tan^{-1}1.501=56.33^\text{o}}$
7. Thus we can write:
■ The final velocity shown in fig.6.81 has a magnitude of 7.1 ms-1 and a direction which makes 56.33o with the x-axis

• Next we will see problems with 3 unknowns.  Such problems involve somewhat lengthy calculations
■ But those calculations will be greatly simplified if the two colliding objects have the same mass
• The Solved examples 6.42 and 6.43 given below will demonstrate this idea

Solved example 6.42
Prove that an elastic collision between equal masses in 2 dimensions always results in the objects bouncing off each other at a 90o degrees angle (assume one of the objects to be initially stationary). 
Solution:
1. Fig.6.82 below shows a 2-dimensional collision between two spheres 'A' and 'B'
Fig.6.82
• Both the spheres have the same mass. So we can write: mA = mB = m
• We have to prove that $\mathbf\small{(\theta_{Af}+\theta_{Bf})=90^\text{o}}$
2. The table is shown below:
3. Considering momenta in the x-direction, we have:
• Sum in column 6 = Sum in column 8
$\mathbf\small{\Rightarrow \sum |\vec{p}_{i(x)}|=\sum |\vec{p}_{f(x)}|}$
$\mathbf\small{\Rightarrow [m|\vec{v}_{Ai(x)}|+0]=[m|\vec{v}_{Af(x)}|+m|\vec{v}_{Bf(x)}|]}$
$\mathbf\small{\Rightarrow [|\vec{v}_{Ai(x)}|]=[|\vec{v}_{Af(x)}|+|\vec{v}_{Bf(x)}|]}$
$\mathbf\small{\Rightarrow [|\vec{v}_{Ai}|\cos \theta_{Ai}]=[|\vec{v}_{Af}|\cos \theta_{Af}+|\vec{v}_{Bf}|\cos \theta_{Bf}]}$
4. Considering momenta in the y-direction, we have:
• Sum in column 7 = Sum in column 9
$\mathbf\small{\Rightarrow \sum |\vec{p}_{i(y)}|=\sum |\vec{p}_{f(y)}|}$
$\mathbf\small{\Rightarrow [0+0]=[m|\vec{v}_{Af(y)}|+m|\vec{v}_{Bf(y)}|]}$
$\mathbf\small{\Rightarrow [0]=[|\vec{v}_{Af(y)}|+|\vec{v}_{Bf(y)}|]}$
$\mathbf\small{\Rightarrow [0]=[|\vec{v}_{Af}|\sin \theta_{Af}+|\vec{v}_{Bf}|\sin \theta_{Bf}]}$
5. So we have two equations:
(i) From (3) we have: $\mathbf\small{|\vec{v}_{Af}|\cos \theta_{Af}+|\vec{v}_{Bf}|\cos \theta_{Bf}=|\vec{v}_{Ai}|\cos \theta_{Ai}}$
(ii) From (4) we have: $\mathbf\small{|\vec{v}_{Af}|\sin \theta_{Af}+|\vec{v}_{Bf}|\sin \theta_{Bf}=0}$
6. But we have three unknowns. So we must have three equations
• For the third equation, we apply conservation of kinetic energy
• Total initial kinetic energy = Total final kinetic energy
• Since the masses are equal, we have: $\mathbf\small{|\vec{v_{Ai}}|^2+|\vec{v_{Bi}}|^2=|\vec{v_{Af}}|^2+|\vec{v_{Bf}}|^2}$
$\mathbf\small{\Rightarrow |\vec{v_{Ai}}|^2=|\vec{v_{Af}}|^2+|\vec{v_{Bf}}|^2}$
[∵ vBi = 0]
7. Let us write the three equations together:
(i) From (3) we have: $\mathbf\small{|\vec{v}_{Af}|\cos \theta_{Af}+|\vec{v}_{Bf}|\cos \theta_{Bf}=|\vec{v}_{Ai}|\cos \theta_{Ai}}$
(ii) From (4) we have: $\mathbf\small{|\vec{v}_{Af}|\sin \theta_{Af}+|\vec{v}_{Bf}|\sin \theta_{Bf}=0}$
(iii) From (6) we have: $\mathbf\small{|\vec{v_{Af}}|^2+|\vec{v_{Bf}}|^2=|\vec{v_{Ai}}|^2}$
8. Let us write them in a 'easy to manipulate' form:
(i) $\mathbf\small{A\;\cos \theta_{A}+B\cos \theta_{B}=k_1}$
(ii) $\mathbf\small{A\;\sin \theta_{A}+B\sin \theta_{B}=0}$
(iii) $\mathbf\small{A^2+B^2=(k_1)^2}$ 
Where:
• $\mathbf\small{A=|\vec{v_{Af}}|}$. A quantity that we have to find
• $\mathbf\small{B=|\vec{v_{Bf}}|}$. A quantity that we have to find
• $\mathbf\small{\theta_{B}=\theta_{B_f}}$. A quantity that we have to find
• $\mathbf\small{\theta_{A}=\theta_{Af}}$. A constant, which can be calculated from the given data
• $\mathbf\small{k_1=|\vec{v}_{Ai}|\cos \theta_{Ai}}$ 
    ♦ But $\mathbf\small{\theta_{Ai}=0}$. So $\mathbf\small{\cos \theta_{Ai}}$ =1
    ♦ Thus we get: $\mathbf\small{k_1=|\vec{v}_{Ai}|\cos \theta_{Ai}=|\vec{v}_{Ai}|}$ 
    ♦ So k1 is a constant, which can be calculated from the given data
■ Now we can write the steps for obtaining the 3 unknowns:
(iv) Squaring (i), we get:
$\mathbf\small{A^2\,\cos^2\theta_A+B^2\,\cos^2\theta_B+2AB\,\cos\theta_A\,\cos\theta_B=(k_1)^2}$
(v) Squaring (ii), we get:
$\mathbf\small{A^2\,\sin^2\theta_A+B^2\,\sin^2\theta_B+2AB\,\sin\theta_A\,\sin\theta_B=0}$
(vi) Adding (iv) and (v), we get:
$\mathbf\small{(A^2\,\cos^2\theta_A+A^2\,\sin^2\theta_A)+(A^2\,\sin^2\theta_B+B^2\,\sin^2\theta_B)+(2AB\,\cos\theta_A\,\cos\theta_B+2AB\,\sin\theta_A\,\sin\theta_B)=(k_1)^2+0}$
$\mathbf\small{\Rightarrow A^2(\cos^2\theta_A+\sin^2\theta_A)+B^2(\sin^2\theta_B+\sin^2\theta_B)+(2AB\,\cos\theta_A\,\cos\theta_B+2AB\,\sin\theta_A\,\sin\theta_B)=(k_1)^2+0}$
$\mathbf\small{\Rightarrow A^2+B^2+(2AB\,\cos\theta_A\,\cos\theta_B+2AB\,\sin\theta_A\,\sin\theta_B)=(k_1)^2}$
(vii) But from (iii), we have: $\mathbf\small{A^2+B^2=(k_1)^2}$
• Substituting this in (v), we get:
$\mathbf\small{(k_1)^2+(2AB\,\cos\theta_A\,\cos\theta_B+2AB\,\sin\theta_A\,\sin\theta_B)=(k_1)^2}$
$\mathbf\small{\Rightarrow 2AB\,\cos\theta_A\,\cos\theta_B+2AB\,\sin\theta_A\,\sin\theta_B=0}$
$\mathbf\small{\Rightarrow 2AB(\cos\theta_A\,\cos\theta_B+\,\sin\theta_A\,\sin\theta_B)=0}$
(viii) Using the identity $\mathbf\small{\cos(\theta_1-\theta_2)=\cos\theta_1\,\cos\theta_2+\sin\theta_1\,\sin\theta_2}$, we get:
$\mathbf\small{2AB\,\cos(\theta_A-\theta_B)=0}$
(ix) Putting back the values, we get:
• $\mathbf\small{2|\vec{v}_{Af}|\,|\vec{v}_{Bf}|\,\cos(\theta_{Af}-\theta_{Bf})=0}$
• $\mathbf\small{|\vec{v}_{Af}|}$ can be zero only if all the three conditions given below are satisfied:
    ♦ It is a one-dimensional collision (Details here)
    ♦ The two masses are equal
    ♦ Object B is stationary before collision
• In our present case, the second and third conditions are satisfied
• But it is not a one-dimensional collision. What we have is a two-dimensional collision
• So $\mathbf\small{|\vec{v}_{Af}|}$ cannot be zero  
• $\mathbf\small{|\vec{v}_{Bf}|}$ can be zero only if the mass of B is very large compared to mass of A. But in our present case, both masses are equal
• So $\mathbf\small{|\vec{v}_{Bf}|}$ cannot be zero
• Thus the only option is: $\mathbf\small{\cos(\theta_{Af}-\theta_{Bf})=0}$
• If $\mathbf\small{\cos(\theta_{Af}-\theta_{Bf})=0}$, then $\mathbf\small{(\theta_{Af}-\theta_{Bf})=90^\text{o}}$  
■ This relation $\mathbf\small{(\theta_{Af}-\theta_{Bf})=90^\text{o}}$ is our key
9. In fig.6.83(a) below, we see that, $\mathbf\small{(\theta_{Af}-\theta_{Bf})}$ is the 'angle between the two final vectors'
Proof that an elastic 2-dimensional collision between equal masses in 2 dimensions always results in the objects bouncing off each other at a 90 degrees angle when one of the objects to be initially stationary
Fig.6.83
• If $\mathbf\small{(\theta_{Af}-\theta_{Bf})}$ is to be 90, the 'after collision' fig. will be as in (b)
• Here also, $\mathbf\small{(\theta_{Af}-\theta_{Bf})}$ is the 'angle between the two final vectors'
10. Another possibility is shown in fig.c
• After collision, the object 'B' is below the x-axis. It's final velocity vector makes an angle of $\mathbf\small{-\theta_{Bf}}$ with the x-axis  
• So $\mathbf\small{(\theta_{Af}-\theta_{Bf})}$ becomes: $\mathbf\small{[\theta_{Af}-(-\theta_{Bf})]=[theta_{Af}+\theta_{Bf}]}$ 
• Here also, $\mathbf\small{(\theta_{Af}-\theta_{Bf})}$ is the 'angle between the two final vectors'
■ Thus we can write: After a 2-dimensional collision, the two objects will scatter at 90o to each other when the following two conditions are satisfied:
    ♦ The two objects have the same mass
    ♦ One of the objects is stationary before collision

Solved example 6.43
Two identical objects A and B collide on a smooth horizontal surface. B was originally at rest. A has an initial velocity of 6 ms-1. After collision it scatters at an angle of 30o to the original direction.
(a) What is the magnitude of the velocity of 'A' after the collision ?
(b) What is the magnitude and direction of the velocity of 'B' after the collision ?
Solution:
1. Fig.6.84 below shows the collision:
Fig.6.84
• In the fig.6.84, θBf is shown below the initial direction. But the initial direction is considered as the x-axis
• So θBf is below the x-axis. That means, θBf is negative
• But we need not write '(-θBf)' and do the calculations. We can do the calculations using '(+θBf)'
• If in the final results, we get a negative value for 'θBf', the positions in fig.6.83 will be justified
2. The table is shown below:

• All the cells in columns 1 to 5 can be filled up (using the given data) except (A,3), (B,3) and (B,5)
    ♦ (A,3) contains the unknown $\mathbf\small{|\vec{v_{Af}}|}$
    ♦ (B,3) contains the unknown $\mathbf\small{|\vec{v_{Bf}}|}$
    ♦ (B,5) contains the unknown $\mathbf\small{\theta_{Bf}}$
• So there are three unknowns. We need to form three equations
• Also note that, there are 3 'question marks' in the fig.6.84 above
• Most of the cells in columns 6 to 9 need to be calculated except (B,6), (A,7) and (B,7)
• Those 3 cells have zero values because:
    ♦ B has zero initial x-velocity
    ♦ A has zero initial y-velocity
    ♦ B has zero initial y-velocity
3. Considering momenta in the x-direction, we have:
• Sum in column 6 = Sum in column 8
$\mathbf\small{\Rightarrow [6m+0]=[m|\vec{v_{Af(x)}}|+m|\vec{v_{Bf(x)}}|]}$
$\mathbf\small{\Rightarrow [6]=[|\vec{v_{Af}}| \cos \theta_{Af}+|\vec{v_{Bf}}| \cos \theta_{Bf}]}$
$\mathbf\small{\Rightarrow [6]=[|\vec{v_{Af}}| \cos 30+|\vec{v_{Bf}}| \cos \theta_{Bf}]}$
$\mathbf\small{\Rightarrow [6]=[0.866|\vec{v_{Af}}|+|\vec{v_{Bf}}| \cos \theta_{Bf}]}$
4. Considering momenta in the y-direction, we have:
• Sum in column 7 = Sum in column 9
$\mathbf\small{\Rightarrow [0]=[m|\vec{v_{Af(y)}}|+m|\vec{v_{Bf(y)}}|]}$
$\mathbf\small{\Rightarrow [0]=[|\vec{v_{Af}}| \sin \theta_{Af}+|\vec{v_{Bf}}| \sin \theta_{Bf}]}$
$\mathbf\small{\Rightarrow [0]=[|\vec{v_{Af}}| \sin 30+|\vec{v_{Bf}}| \sin \theta_{Bf}]}$
$\mathbf\small{\Rightarrow [0]=[0.5|\vec{v_{Af}}|+|\vec{v_{Bf}}| \sin \theta_{Bf}]}$
5. So we have two equations:
(i) From (3) we have: $\mathbf\small{0.866|\vec{v_{Af}}|+|\vec{v_{Bf}}| \cos \theta_{Bf}=6}$
(ii) From (4) we have: $\mathbf\small{0.5|\vec{v_{Af}}|+|\vec{v_{Bf}}| \sin \theta_{Bf}=0}$
6. But we have three unknowns. So we must have three equations
• For the third equation, we apply conservation of kinetic energy
Total initial kinetic energy = Total final kinetic energy
• Since the masses are equal, we have: $\mathbf\small{|\vec{v_{Ai}}|^2+|\vec{v_{Bi}}|^2=|\vec{v_{Af}}|^2+|\vec{v_{Bf}}|^2}$
$\mathbf\small{\Rightarrow |\vec{v_{Ai}}|^2+0=|\vec{v_{Af}}|^2+|\vec{v_{Bf}}|^2}$
$\mathbf\small{\Rightarrow 6^2=|\vec{v_{Af}}|^2+|\vec{v_{Bf}}|^2}$
$\mathbf\small{\Rightarrow |\vec{v_{Af}}|^2+|\vec{v_{Bf}}|^2=36}$
7. Let us write the three equations together:
(i) From (3) we have: $\mathbf\small{0.866|\vec{v_{Af}}|+|\vec{v_{Bf}}| \cos \theta_{Bf}=6}$
(ii) From (4) we have: $\mathbf\small{0.5|\vec{v_{Af}}|+|\vec{v_{Bf}}| \sin \theta_{Bf}=0}$
(iii) From (6) we have: $\mathbf\small{|\vec{v_{Af}}|^2+|\vec{v_{Bf}}|^2=36}$
8. Now we apply the relation $\mathbf\small{\theta_{Af}-\theta_{Bf}=90^\text{o}}$
We get: $\mathbf\small{30-\theta_{Bf}=90}$
$\mathbf\small{\Rightarrow \theta_{Bf}=30-90=-60^\text{o}}$ 
• Note: We can apply this relation because, the following two conditions are satisfied:
    ♦ The two objects have the same mass
    ♦ One of the objects is stationary before collision
9. Substituting this value of $\mathbf\small{\theta_{Bf}}$ in (i), we get:
$\mathbf\small{0.866|\vec{v_{Af}}|+|\vec{v_{Bf}}| \cos (-60)=6}$
$\mathbf\small{\Rightarrow 0.866|\vec{v_{Af}}|+0.5|\vec{v_{Bf}}|=6}$
10. Substituting this value of $\mathbf\small{\theta_{Bf}}$ in (ii), we get:
$\mathbf\small{0.5|\vec{v_{Af}}|+|\vec{v_{Bf}}| \sin (-60)=0}$
$\mathbf\small{\Rightarrow 0.5|\vec{v_{Af}}|-0.866|\vec{v_{Bf}}|=0}$
11. Solving (9) and (10), we get:
$\mathbf\small{|\vec{v_{Af}}|}$ = 5.196 ms-1
$\mathbf\small{|\vec{v_{Bf}}|}$ = 3
• Note: For solving, the following steps can be used:
    ♦ Multiply (9) by 0.866
    ♦ Multiply (10) by 0.5
    ♦ Add the results
12. Check:
• Let us substitute the velocities in (iii). We have:
$\mathbf\small{|\vec{v_{Af}}|^2+|\vec{v_{Bf}}|^2=36}$
• The LHS will be: $\mathbf\small{5.196^2+3^2=(27+9)=36}$
• RHS = 36
• So the results obtained in (11) are correct

We have completed this discussion on work, energy and power. In the next chapter, we will discuss about rotational motion

PREVIOUS           CONTENTS          NEXT

Copyright©2019 Higher Secondary Physics. blogspot.in - All Rights Reserved

No comments:

Post a Comment